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Abstract. We study two-sided matching markets where the matching
is preceded by a costly interviewing stage in which firms acquire infor-
mation about the qualities of candidates. Our focus is on the impact of
the signals of quality available prior to the interviewing stage. Using a
mixture of simulation, numerical, and empirical game theoretic analysis,
we show that more commonality in the quality signals can be harmful,
yielding fewer matches as some firms make the same mistakes in choosing
whom to interview. Relatively high and medium quality candidates are
most likely to suffer lower match probabilities. The effect can be miti-
gated when firms use “more rational” interviewing strategies, or through
the availability of private signals of candidate quality to the firms.
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1 Introduction

The matching literature typically assumes that agents know their own prefer-
ences before the mechanism is run. Recently, there have been some papers that
try to relax this stringent assumption [1, 2, 7], or to look at cases where the
mechanism does not wish to elicit complete preference information [4]. In one-
shot settings, agents come into the matching setting with unknown (or partially
known) true preferences, but can learn more through a costly information ac-
quisition (interviewing) stage before the actual matching happens (for example,
academic job markets) [7, 13]; in repeated settings, the “match” is not final, but
conveys information to participants on quality [5, 2].

Lee and Schwartz proposed what may be the first model of matching with
an interviewing stage, where employers first simultaneously choose a subset of
workers to interview, and then, in a second stage, submit preferences to a (Gale-
Shapley) matching algorithm that then forms the matching [7]. The basic ques-
tion that Lee and Schwartz ask is about the employer’s decision of whom to
interview, given that interviews are costly and all employers and workers on ei-
ther side of the market are ex ante identical. The main complexity is then that
the marginal benefit of interviewing a worker goes down as her number of other
interviews goes up. The major result is that in symmetric equilibria (where each
employer and worker has the same number of interviews), the number of agents
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matched goes up in the overlap, a measure characterizing the number of common
interview partners among agents.

Our focus is on labor markets with interviewing, and in particular, the role
of information in the interviewing and matching process. Consider the match-
ing process that academic departments go through when interviewing and hiring
faculty candidates. Typically, departments have a budget, say they can interview
three or four candidates for a position. They start off the process by receiving
a noisy signal about their preferences over candidates – CVs, letters of recom-
mendation, and word-of-mouth can yield much information about candidates,
but not nearly as much as an in-person interview. Once they have received these
noisy signals, each department chooses which candidates to interview. Following
Lee and Schwartz [7], after all the interviews have taken place, we can model
the matching process as Gale-Shapley matching with departments submitting
ranked lists of the candidates they interviewed. While this ignores some fric-
tions (like exploding offers [3, 8]) that can be important, those are likely to be a
second-order effect compared with the choice of candidates to interview. In con-
trast with Lee and Schwartz, who consider ex ante identical firms and workers,
we are interested in situations where firms and workers are of different qualities,
and some quality signals are available prior to the interviewing stage.

We look at a stylized model where there is a universally shared, common
knowledge ranking of all firms, and there is a “true” universally shared ranking of
all candidates, but this true ranking is not known – instead, firms receive different
signals of candidates’ rankings or qualities. If the true ranking were known to
everyone, there would be only one stable matching, the assortative one, and any
rational interviewing process would lead to the stable outcome in the matching
stage. When signals of quality or ranking are noisy, firms must reason both about
the true quality of candidates and about strategic issues in deciding whom to
interview. This can lead to inefficiencies, where some candidates and firms do
not end up getting matched whereas they would have with better information;
these inefficiencies may fall disproportionately on some portion of the population
of candidates and firms.

We are particularly interested in the roles of common and private information
on aggregate and distributional outcomes in such matching markets. Common
signals are shared across firms – for example, the quality of a CV, number
of publications, LinkedIn endorsements, or public contributions to open source
projects, can all be thought of as common signals of varying precision. Private
signals can be generated through phone screens, preliminary interviews, etc. We
assume that common and private signals are conditionally independent given the
true ranking or value of the candidate. The central question of this paper is the
effect of the relative precision of common signals and private signals on market
outcomes. While a perfect common signal would reduce the problem to one
with known rankings of both firms and candidates (and lead to the assortative
matching and no inefficiencies under any reasonable model), our main finding
is that the presence of a strong, but imperfect, common signal in addition to
existing private signals can actually have significant negative effects, with fewer
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matchings occurring than with a private signal alone. The burden of this is
typically borne by the candidates who are ranked relatively high (but not in
the highest echelon). The mechanism is interesting – when these candidates end
up with a common signal that is “too high”, they interview at firms that are
ranked too high for their actual quality. The firms that are closer to their true
range choose not to interview them, but when these candidates’ true qualities
are revealed, they often don’t get offers from the places that did interview them.

These findings are robust to several different choices of how signals of rankings
and values are generated, and to different strategic choices by firms of whom to
interview. The latter question is independently interesting – we demonstrate the
intuition for our main result with a simple, but realistic, interviewing strategy
where firms interview candidates “around” their true ranking. We then turn
to a form of empirical game theoretic analysis [14] to explore a richer space of
interviewing strategies, yielding “more rational” strategic decisions. This can
alleviate the problem, with more agents being matched when there is only a
common signal, but does not provide much benefit in terms of the number of
agents matched when firms have access to both common and private signals.

2 Model and Inference

There are n workers and n firms, represented by the sets W = {w1, ..., wn} and
F = {f1, ..., fn}. The matching market operates in two stages, following the
model of Lee and Schwarz [7]. In the first stage, each firm selects k workers
(or candidates) to interview; this decision is made on the basis of information
present in the signals received by firms (described below). During the interview
process, the true ranking of the set of candidates that is interviewed is revealed to
each firm. The second stage can then be thought of as a Gale-Shapley matching
where each firm submits a ranked list of the candidates it interviewed (others
are unacceptable), and each candidate submits a ranked list of firms.

All workers know their preference rankings over employers with certainty.
We assume that the workers all have exactly the same preferences over potential
employers. Further, there exists a universal “true” ranking of all the workers
as well, but this ranking is unobserved. Employers receive a private signal of
their preferences as well as a common signal. In this paper we consider two
possibilities. In random-utility models wi has a true value vi (which is drawn
from a normal distribution). fj ’s private signal sj = (s1, s2, . . . sn). Each si, 1 ≤
i ≤ n is a noisy realization of the true value of vi, corrupted by zero-mean
Gaussian or uniform noise. The common signal, received by all employers, is a
single (noisy) vector zC = (z1, z2, . . . zn).

In the Mallows model [11], signals are directly over the ranking space.
Following Lu and Boutilier’s [9] description of its form, we say that each em-
ployer’s private signal is a ranking Γj sampled from the distribution which assigns

Pr(Γj |Γ, φp) = 1
Zφp

d(Γj ,Γ ), where Γ is the modal (true) ranking, φp ∈ (0, 1] is
a dispersion parameter such that the smaller φp is, the more the distribution
will be concentrated around the modal ranking, d is a distance function between
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rankings (we use the Kendall tau distance), and Z is a normalizing factor. The
common signal, ΓC is sampled from a Mallows model with the same modal rank-
ing Γ and a possibly different dispersion parameter φC . In both cases, we assume
common knowledge of all the relevant parameters of the distributions; the only
unknowns are the true values or rankings.

In both the random utility and Mallows models, it is computationally diffi-
cult to perform full Bayesian reasoning over the whole space of possible posterior
rankings, so we assume that firms compute the single most likely posterior rank-
ing from the common and private signals, which we denote as Γ̃j , and use this
single ranking for interviewing decisions. We defer details of the inference pro-
cedures to a longer version of this paper, but note that, in the random utility
models, the procedures follow from those developed by MacQueen [10], while in
the Mallows model, we use an algorithm based on the one devised by Qin et al
[12] in the coset-permutation distance based stagewise (CPS) model (which is
equivalent to the Mallows model using the Kendall tau distance).

3 Results

We first examine outcomes in a market where firms all use the same simple
and intuitive interviewing strategy. They each compute their posterior ranking
based on the available signals, and then interview the k candidates who are
ranked “around” the firms own ranking (e.g. with k = 5, the firm ranked 11
interviews candidates 9 through 13), with the firms at the top and bottom of
the rankings adjusting their interview sets downwards and upwards as needed.
We run 50000 simulations for each of the random utility and Mallows models;
each simulation is of a market with 30 firms and 30 workers, each with interview
budget 5. In each run, we hold the private signal parameters fixed, which are
σp, bp in the random utility models and φp in the Mallows model, and vary the
common signal parameters, which are σC , bC in the random utility models and
φC in the Mallows model.

Based on the observation that the only stable matching if true preferences
were known is the assortative matching, and that adding a common signal
gives everyone more information about the true ranking, one would assume that
adding the common signal always leads to more agents being matched. At the
extreme, this is obvious – suppose the common signal had no noise and contained
perfect information. Then the rational inference is just to use that signal. In this
case, the assortative match would occur for sure.

But it turns out that, as the signal becomes less precise, the number of
unmatched agents goes up sharply, and quickly exceeds the expected number
of unmatched agents when no common signal is present! Surprisingly, on the
candidates’ side, the candidates who are less likely to get matched are actually
the higher ranked ones (except for the very top ranked ones) (see Figures 1
and 2). What is the mechanism at play? In a more coordinated environment, as
created by a common signal, the correlation between employers’ estimates of a
workers desirability is higher. Thus, it is more likely that several employers all
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Fig. 1. Average number of agents left unmatched (Y axis) versus (decreasing) “pre-
cision” of the common signal (σC for Gaussian noise (left), bC for uniform noise
(middle), and φC for the Mallows model (right)), holding the precision of private
signals fixed. The dashed line shows the number that are left unmatched when there
is no common signal.
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Fig. 2. The probability that the candidate of a particular rank is matched when firms
have access to both a common signal and a private signal. Left: Gaussian noise (σC =
0.6, σp = 0.5), Center: Uniform noise (bC = 0.6, bp = 0.5), Right: Mallows model
(φC = 0.7, φp = 0.6).

make the mistake of thinking a particular worker is too good or too bad for them.
For candidates, the truth-revealing nature of the interview phase means that it
can be disadvantageous to “place too high” in the first (interview selection)
stage.1 When opinions are more independent, as is the case when the private
signal is stronger, it is less likely that someone will fall through the cracks in
this manner. Therefore, more homogeneity of opinion, with even a little bit of
noise, can create worse outcomes!

Alternative Interviewing Strategies Our results thus far apply to a simple in-
terviewing strategy. What if employers used more sophisticated strategies? We
analyze this using the basic idea of empirical game theoretic analysis [14, 6]. The
fundamental strategic decision faced by a firm is to choose a set of k candidates
to interview. Game-theoretically, an (ex-ante) Bayes-Nash equilibrium would be

1 For example, suppose a middle-ranked candidate gets early “buzz” on the job market,
he may not get interviews from departments actually ranked in his vicinity because
they think he is out of reach, but may not get offers once he is interviewed by higher
ranked places and they realize he isn’t quite at their level.
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one where each firm would not change the set of candidates it chose to inter-
view, given the strategies of other firms, and the information available to them
prior to the interview stage. Unfortunately, this game is very complex to ana-
lyze. Therefore, we restrict our attention to a manageable set of strategies: each
firm can decide on any set of k contiguously ranked candidates (in its posterior
private ranking). We can determine (approximate) equilibrium firm strategies
using an iterative empirical method (since firm i’s best strategy depends only
on the choices of the firms ranked above i, and also has no effect on the utilities
of those firms).

Can these “more rational” interviewing strategies resolve some of the in-
efficiency in terms of the number of participants left unmatched? Our initial
experiments (available in a longer version of this paper) indicate that with only
common signals, when the penalty for being unmatched is high enough, the bet-
ter strategies, do, in fact, reduce the number left unmatched. However, with both
common and private signals, the more complex strategies do not provide much,
if any, societal benefit.
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